论文标题
基于强化学习的基于查询的顶点订购模型,用于子图匹配
Reinforcement Learning Based Query Vertex Ordering Model for Subgraph Matching
论文作者
论文摘要
在使用图形结构化数据的各个字段中,子图匹配是一个基本问题。子图匹配算法列举了数据图G中查询图Q的所有同构嵌入。匹配算法的重要分支利用了回溯搜索方法,该方法在查询角度的匹配顺序后递归扩展了中间结果。已经表明,匹配顺序在这些基于回溯子图匹配算法的时间效率中起着至关重要的作用。近年来,已经提出了许多用于查询顶点订购的高级技术(即,匹配订单生成),以根据预设启发式规则减少无主张的中间结果。在本文中,我们首次应用增强学习(RL)和图形神经网络(GNN)技术来生成高质量匹配顺序,以用于子图匹配算法。我们的模型无需使用固定的启发式方法来生成匹配顺序,而是可以捕获并充分利用图形信息,从而用基于自适应学习的规则确定查询顶点顺序,从而可以大大减少冗余枚举的数量。借助强化学习框架,我们的模型能够考虑长期的好处,而不仅仅是在当前订购步骤中考虑本地信息。对六个现实生活数据图的扩展实验表明,与正常的algorithms相比,我们提出的匹配订单生成技术最多可以减少两种较大的查询处理时间。
Subgraph matching is a fundamental problem in various fields that use graph structured data. Subgraph matching algorithms enumerate all isomorphic embeddings of a query graph q in a data graph G. An important branch of matching algorithms exploit the backtracking search approach which recursively extends intermediate results following a matching order of query vertices. It has been shown that the matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms. In recent years, many advanced techniques for query vertex ordering (i.e., matching order generation) have been proposed to reduce the unpromising intermediate results according to the preset heuristic rules. In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms. Instead of using the fixed heuristics to generate the matching order, our model could capture and make full use of the graph information, and thus determine the query vertex order with the adaptive learning-based rule that could significantly reduces the number of redundant enumerations. With the help of the reinforcement learning framework, our model is able to consider the long-term benefits rather than only consider the local information at current ordering step.Extensive experiments on six real-life data graphs demonstrate that our proposed matching order generation technique could reduce up to two orders of magnitude of query processing time compared to the state-of-the-art algorithms.