论文标题
部分可观测时空混沌系统的无模型预测
Absolute fully entangled fraction from spectrum
论文作者
论文摘要
完全纠缠的分数(FEF)是密度矩阵的重要数字。在两分$ d \ otimes d $量子系统中,阈值fef $> 1/d $对量子信息处理任务产生了重大影响。像可分离性一样,FEF的价值也与基础希尔伯特领域的全球基础的选择有关。具有FEF $ \ le 1/d $的州可能会在另一个全球基础上给出一个价值$> 1/d $。全球基础的变化对应于对量子状态的全球统一行动。在目前的工作中,我们发现有一些量子状态在任何全球统一的行动中,即全球选择的任何选择,其FEF仍低于$ 1/d $。我们援引超平面分离定理,通过全球统一行动将FEF从$ 1/d $提高的州划定。因此,我们在Qubits中探究了一个纯三方系统的边际。我们观察到,在对参数的一些限制下,即使两个方合作(通过对组合系统的统一行动)也将无法违反FEF阈值。该研究进一步扩展到包括一些混合三个量子和三个QUTRIT系统的类别。此外,还研究了与$ k- $ copy nonlocality and Teleportation有关的工作的含义。
Fully entangled fraction (FEF) is a significant figure of merit for density matrices. In bipartite $ d \otimes d $ quantum systems, the threshold value FEF $ > 1/d $, carries significant implications for quantum information processing tasks. Like separability, the value of FEF is also related to the choice of global basis of the underlying Hilbert space. A state having its FEF $ \le 1/d $, might give a value $ > 1/d $ in another global basis. A change in the global basis corresponds to a global unitary action on the quantum state. In the present work, we find that there are quantum states whose FEF remains less than $ 1/d $, under the action of any global unitary i.e., any choice of global basis. We invoke the hyperplane separation theorem to demarcate the set from states whose FEF can be increased beyond $ 1/d $ through global unitary action. Consequent to this, we probe the marginals of a pure three party system in qubits. We observe that under some restrictions on the parameters, even if two parties collaborate (through unitary action on their combined system) they will not be able to breach the FEF threshold. The study is further extended to include some classes of mixed three qubit and three qutrit systems. Furthermore, the implications of our work pertaining to $ k- $copy nonlocality and teleportation are also investigated.