论文标题
通过旋转原子违反本地洛伦兹对称性的纠缠增强测试建议
Entanglement-enhanced test proposal for local Lorentz-symmetry violation via spinor atoms
论文作者
论文摘要
Lorentz转化下的不变性对于标准模型和一般相对论都是基础的。通过原子系统测试洛伦兹对称违规(LSV)引起了对理论和实验的广泛兴趣。最近关于LSV测试的一些建议,即违规的影响可以描述为局部相互作用。此外,可以通过量子纠缠及其量子Fisher信息(QFI)提高LSV的测试精度,这意味着测试精度可以渐近地达到海森堡的极限。通常,集体可观察的分辨率有限阻止检测大QFI。在这里,我们提出了一种多模多型量子干涉仪,用于通过纺纱原子的合奏来测试LSV参数$κ$。通过采用$ n $ ATOM多模GHz状态,测试精度可以达到Heisenberg限制$Δκ\ Propto 1/(f^2n)$,带有旋转长度$ f $和原子数$ n $。我们找到了一个实际可观察的(或实际测量过程),以实现最终的精度,并通过实验可访问的三模式干涉测量法与Bose凝结的Spin-1原子进行研究。通过选择合适的输入状态和单位重组操作,可以通过人口测量提取LSV参数$κ$。特别是,LSV参数$κ$的测量精度可以超过标准的量子极限,甚至通过旋转混合动力学或通过量子相变的方式接近Heisenberg限制。 我们提出的方案可能为通过原子系统大大改善LSV测试的可行方式开辟了可行的方法,并提供了多粒子纠缠状态的替代应用。
Invariance under Lorentz transformations is fundamental to both the standard model and general relativity. Testing Lorentz-symmetry violation (LSV) via atomic systems attracts extensive interests in theory and experiment. Some recent proposals for testing LSV present that the effects of violation can be described as a local interaction. Further, the test precision of LSV can be enhanced via quantum entanglement and its quantum Fisher information (QFI) implicates that the test precision can asymptotically reach the Heisenberg limit. In general, the limited resolution of collective observables prevents the detection of large QFI. Here, we propose a multimode many-body quantum interferometry for testing the LSV parameter $κ$ via an ensemble of spinor atoms. By employing an $N$-atom multimode GHZ state, the test precision can attain the Heisenberg limit $Δκ\propto 1/(F^2N)$ with the spin length $F$ and the atomic number $N$. We find an actual observable (or practical measurement process) to achieve the ultimate precision and study the LSV test via an experimentally accessible three-mode interferometry with Bose condensed spin-1 atoms for example. By selecting suitable input states and unitary recombination operation, the LSV parameter $κ$ can be extracted via population measurement. Especially, the measurement precision of the LSV parameter $κ$ can beat the standard quantum limit and even approach the Heisenberg limit via spin mixing dynamics or driving through quantum phase transitions. Our proposed scheme may open up a feasible way for a drastic improvement of the LSV tests with atomic systems and provide an alternative application of multi-particle entangled states.