论文标题
DocSegtr:实例级端到端文档图像分割变压器
DocSegTr: An Instance-Level End-to-End Document Image Segmentation Transformer
论文作者
论文摘要
了解具有丰富布局的文档是迈向信息提取的重要一步。商业智能过程通常需要大规模从文档中提取有用的语义内容,以进行后续决策任务。在这种情况下,不同文档对象(标题,部分,图形等)的实例级分割已成为文档分析和理解社区的有趣问题。为了朝这个方向推进研究,我们提出了一个基于变压器的模型,称为\ emph {docsegtr},用于文档图像中复杂布局的端到端实例分割。该方法适应了一个双重注意模块,用于语义推理,这有助于与最先进相比,有助于高度计算的效率。据我们所知,这是基于变压器的文档细分的第一部作品。对PublayNet,Prima,“历史日本(HJ)和Tablebank”(Tablebank)等竞争性基准的广泛实验表明,与现有的最新方法相比,我们的模型的平均精度为89.4、40.3、83.4和93.3。这个简单而灵活的框架可以作为文档图像中实例级识别任务的有前途的基线。
Understanding documents with rich layouts is an essential step towards information extraction. Business intelligence processes often require the extraction of useful semantic content from documents at a large scale for subsequent decision-making tasks. In this context, instance-level segmentation of different document objects (title, sections, figures etc.) has emerged as an interesting problem for the document analysis and understanding community. To advance the research in this direction, we present a transformer-based model called \emph{DocSegTr} for end-to-end instance segmentation of complex layouts in document images. The method adapts a twin attention module, for semantic reasoning, which helps to become highly computationally efficient compared with the state-of-the-art. To the best of our knowledge, this is the first work on transformer-based document segmentation. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ) and TableBank demonstrate that our model achieved comparable or better segmentation performance than the existing state-of-the-art approaches with the average precision of 89.4, 40.3, 83.4 and 93.3. This simple and flexible framework could serve as a promising baseline for instance-level recognition tasks in document images.