论文标题

在上下文中设置AI:关于定义自动驾驶的上下文和操作设计领域的案例研究

Setting AI in context: A case study on defining the context and operational design domain for automated driving

论文作者

Heyn, Hans-Martin, Subbiash, Padmini, Linder, Jennifer, Knauss, Eric, Eriksson, Olof

论文摘要

[上下文和动机]对于自动驾驶系统,需要知道操作环境才能说明绩效和安全性的保证。操作设计域(ODD)是操作环境的抽象,其定义是系统开发过程的组成部分。 [问题 /问题]如何在多样化和分布式开发环境(如汽车行业)中清楚地定义和记录运营环境仍然存在主要的不确定性。该案例研究通过上下文定义来调查挑战,以开发使用机器学习进行自动驾驶的感知功能。 [主要思想/结果]基于对半结构化访谈的数据的定性分析,案例研究表明,在整个行业的上下文定义缺乏标准化,过程中的歧义,这些过程导致导致有关操作上下文的奇怪,缺失的假设,以及在上下文定义中缺乏功能开发者的互动。 [贡献]结果概述了汽车供应商公司在定义使用机器学习系统的操作环境时面临的挑战。此外,该研究从从业者的角度收集了潜在解决方案的想法。

[Context and motivation] For automated driving systems, the operational context needs to be known in order to state guarantees on performance and safety. The operational design domain (ODD) is an abstraction of the operational context, and its definition is an integral part of the system development process. [Question / problem] There are still major uncertainties in how to clearly define and document the operational context in a diverse and distributed development environment such as the automotive industry. This case study investigates the challenges with context definitions for the development of perception functions that use machine learning for automated driving. [Principal ideas/results] Based on qualitative analysis of data from semi-structured interviews, the case study shows that there is a lack of standardisation for context definitions across the industry, ambiguities in the processes that lead to deriving the ODD, missing documentation of assumptions about the operational context, and a lack of involvement of function developers in the context definition. [Contribution] The results outline challenges experienced by an automotive supplier company when defining the operational context for systems using machine learning. Furthermore, the study collected ideas for potential solutions from the perspective of practitioners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源