论文标题
在强子山脉的多个喷气机中有效的横向动量
Effective transverse momentum in multiple jet production at hadron colliders
论文作者
论文摘要
我们认为产生了几种充满活力的喷气机的包容性强子对撞机过程,可能伴随着无色的颗粒(例如希格斯玻色子(S),载体玻色子(S)以及其松弛性腐烂,等等)。我们提出了一个新的变量,该变量可以顺利捕获$ n+1 $至$ n $ -JET过渡。这个变量,我们将$ k_t^{\ rm ness} $表示为有效的横向动量,该横向动量控制$ n+1 $ -1 $ -JET横截面的奇异性,当时额外的喷射尚未解决。 $ k_t^{\ rm ness} $变量提供了新的机会,可以使用非本地递减方案在量子染色体动力学(QCD)中执行高阶计算。我们将$ n+1 $ -JET横截面的单一行为描述为$ k_t^{\ rm ness} \至0 $,并且作为现象学应用,我们使用随后的结果来评估LHC在LHC的$ H $+JET和$ h $+JET的临时订单校正和$ h $+Z $+2 JET生产。我们表明,$ k_t^{\ rm ness} $作为分辨率变量的性能非常出色,并且在强扎和多方彼此的交互方面似乎非常稳定。
We consider the class of inclusive hadron collider processes in which several energetic jets are produced, possibly accompanied by colourless particles (such as Higgs boson(s), vector boson(s) with their leptonic decays, and so forth). We propose a new variable that smoothly captures the $N+1$ to $N$-jet transition. This variable, that we dub $k_T^{\rm ness}$, represents an effective transverse momentum controlling the singularities of the $N+1$-jet cross section when the additional jet is unresolved. The $k_T^{\rm ness}$ variable offers novel opportunities to perform higher-order calculations in Quantum Chromodynamics (QCD) by using non-local subtraction schemes. We study the singular behavior of the $N+1$-jet cross section as $k_T^{\rm ness}\to 0$ and, as a phenomenological application, we use the ensuing results to evaluate next-to-leading order corrections to $H$+jet and $Z$+2 jet production at the LHC. We show that $k_T^{\rm ness}$ performs extremely well as a resolution variable and appears to be very stable with respect to hadronization and multiple-parton interactions.