论文标题
BCl $ _3 $的反应途径用于硅的受体增量掺杂
Reaction pathways of BCl$_3$ for acceptor delta-doping of silicon
论文作者
论文摘要
Bcl $ _3 $是SI中原子精确受体掺杂的有前途的候选者,但是优化使用此技术创建的结构的电气性能需要详细了解该前体的吸附和解离途径。在这里,我们使用密度功能理论和扫描隧道显微镜(STM)来识别和探索在不同退火温度下SI(100)上Bcl $ _3 $的这些途径。我们证明了Bcl $ _3 $ ADSORBS无反应屏障的有选择性,随后与反应障碍物相对容易分离$ \ $ \ $ 1 ev。使用此解离途径,我们将动力学蒙特卡洛模型参数化以预测B掺入速率与剂量条件的关系。 STM用于映像Bcl $ _ {3} $ ADSORBATES,识别多种表面配置并跟踪其分布的变化,这是退火温度的函数,很好地匹配了动力学模型的预测。原子过度受体掺杂的这种直接途径有助于实现广泛的应用,包括双极纳米电子,基于受体的码头和超导SI。
BCl$_3$ is a promising candidate for atomic-precision acceptor doping in Si, but optimizing the electrical properties of structures created with this technique requires a detailed understanding of adsorption and dissociation pathways for this precursor. Here, we use density functional theory and scanning tunneling microscopy (STM) to identify and explore these pathways for BCl$_3$ on Si(100) at different annealing temperatures. We demonstrate that BCl$_3$ adsorbs selectively without a reaction barrier, and subsequently dissociates relatively easily with reaction barriers $\approx$1 eV. Using this dissociation pathway, we parameterize a Kinetic Monte Carlo model to predict B incorporation rates as a function of dosing conditions. STM is used to image BCl$_{3}$ adsorbates, identifying several surface configurations and tracking the change in their distribution as a function of the annealing temperature, matching predictions of the kinetic model well. This straightforward pathway for atomic-precision acceptor doping helps enable a wide range of applications including bipolar nanoelectronics, acceptor-based qubits, and superconducting Si.