论文标题
在波罗维斯科 - 弹性流体液体断层结构中,水力机械地震循环
Hydro-mechanical earthquake cycles in a poro-visco-elasto-plastic fluid-bearing fault structure
论文作者
论文摘要
地震物理学的一个主要目标是得出故障滑移的构框框架,该框架捕获了剪切强度对断层流变学,滑动速度和孔隙流体压力的依赖性。在这项研究中,我们介绍了H-MEC(水力力学地震循环),这是一种新开发的两相流量数值代码 - 它结合了固体岩石变形和普遍的流体流动 - 以模拟地壳应激和流体压力如何在地震周期中在液体液体断层结构上演变。这种统一的基于连续的模型结合了交错的有限差异标记物(SFD-MIC)方法,并说明了Poro-Visco-visco-elasto-elasto plastrastiblesible培养基中完全惯性(波浪介导的)效应和流体流动。全球PICARD深思和自适应时间步进允许正确解决长时间和短期尺度,从缓慢的构造载荷期间的几年到毫秒在动态破裂的传播期间。我们提出了一个全面的面内滑移设置,其中我们测试了沿有限断层宽度从注入点孔隙液压扩散的分析孔隙弹性基准。然后,我们研究了地质断层上的地震和抗压滑动的孔隙流体压力演化和固体流体压缩性的控制序列。虽然流体驱动的剪切裂纹的发作是由孔的局部崩溃和未排水断层区域内的流体的动态自压缩控制的,但随后的动态破裂是由在地震速度下传播的单独的脉搏样流体压力波驱动的。此外,剪切强度与孔流的快速自动化相关的剪切强度可以解释大地震观察到的滑动裂缝能量缩放。
A major goal in earthquake physics is to derive a constitutive framework for fault slip that captures the dependence of shear strength on fault rheology, sliding velocity, and pore-fluid pressure. In this study, we present H-MEC (Hydro-Mechanical Earthquake Cycles), a newly-developed two-phase flow numerical code - which couples solid rock deformation and pervasive fluid flow - to simulate how crustal stress and fluid pressure evolve during the earthquake cycle on a fluid-bearing fault structure. This unified, continuum-based model, incorporates a staggered finite difference-marker-in-cell (SFD-MIC) method and accounts for full inertial (wave mediated) effects and fluid flow in poro-visco-elasto-plastic compressible medium. Global Picard-iterations and an adaptive time stepping allows the correct resolution of both long- and short-time scales, ranging from years during slow tectonic loading to milliseconds during the propagation of dynamic ruptures. We present a comprehensive in-plane strike-slip setup in which we test analytical poroelastic benchmarks of pore-fluid pressure diffusion from an injection point along a finite fault width. We then investigate how pore-fluid pressure evolution and solid-fluid compressibility control sequences of seismic and aseismic slip on geologic faults. While the onset of fluid-driven shear cracks is controlled by localized collapse of pores and dynamic self-pressurization of fluids inside the undrained fault zone, subsequent dynamic ruptures are driven by solitary pulse-like fluid pressure waves propagating at seismic speed. Furthermore, shear strength weakening associated with rapid self-pressurization of pore-fluid can account for the slip-fracture energy scaling observed for large earthquakes.