论文标题

降级扩散恢复模型

Denoising Diffusion Restoration Models

论文作者

Kawar, Bahjat, Elad, Michael, Ermon, Stefano, Song, Jiaming

论文摘要

图像修复中的许多有趣的任务可以作为线性反问题施放。解决这些问题的最新方法使用了随机算法,这些算法从自然图像的后验分布中采样了测量。但是,有效的解决方案通常需要特定于问题的监督培训来对后部进行建模,而不是特定于问题的无监督方法通常依赖于效率低下的迭代方法。这项工作通过引入降级扩散恢复模型(DDRM)来解决这些问题,这是一种有效的,无监督的后验抽样方法。 DDRM是由变异推断的动机,利用了预先训练的denoising扩散生成模型来解决任何线性反问题。我们在多个图像数据集上演示了DDRM在各种测量噪声下的超级分辨率,去缩合,内化和着色的多功能性。 DDRM在重建质量,感知质量和运行时的当前领先无监督方法比最近的竞争对手快5倍。 DDRM还可以从观察到的成像网训练集的分布中概括为自然图像。

Many interesting tasks in image restoration can be cast as linear inverse problems. A recent family of approaches for solving these problems uses stochastic algorithms that sample from the posterior distribution of natural images given the measurements. However, efficient solutions often require problem-specific supervised training to model the posterior, whereas unsupervised methods that are not problem-specific typically rely on inefficient iterative methods. This work addresses these issues by introducing Denoising Diffusion Restoration Models (DDRM), an efficient, unsupervised posterior sampling method. Motivated by variational inference, DDRM takes advantage of a pre-trained denoising diffusion generative model for solving any linear inverse problem. We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization under various amounts of measurement noise. DDRM outperforms the current leading unsupervised methods on the diverse ImageNet dataset in reconstruction quality, perceptual quality, and runtime, being 5x faster than the nearest competitor. DDRM also generalizes well for natural images out of the distribution of the observed ImageNet training set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源