论文标题

神经JPEG:端到端图像压缩利用标准JPEG编码器编码器

Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG Encoder-Decoder

论文作者

Mali, Ankur, Ororbia, Alexander, Kifer, Daniel, Giles, Lee

论文摘要

深度学习的最新进展导致了各种应用程序的超人表现。最近,这些方法已成功地用于改善图像压缩任务中的速率延伸性能。但是,当前方法要么在解码器端使用其他后处理块来改善压缩,要么根据启发式方法提出端到端压缩方案。对于其中的大多数,受过训练的深度神经网络(DNN)与标准编码器不兼容,很难依靠个人计算机和手机。鉴于此,我们提出了一个学会通过在编码器和解码器末端增强其内部神经表示来提高编码性能的系统,我们称为神经JPEG。我们提出了频域预编辑和后编辑方法,以优化编码器和解码器末端的DCT系数的分布,以改善标准压缩(JPEG)方法。此外,我们设计和集成了一个在此混合神经压缩框架内共同学习量化表的方案。实例表明,我们的方法成功地改善了psnr和MS-SSIM等各种质量指标的JPEG的速率差异性能,例如PSNR和MS-SSIM,并产生具有较高色彩退休质量的视觉吸引力。

Recent advances in deep learning have led to superhuman performance across a variety of applications. Recently, these methods have been successfully employed to improve the rate-distortion performance in the task of image compression. However, current methods either use additional post-processing blocks on the decoder end to improve compression or propose an end-to-end compression scheme based on heuristics. For the majority of these, the trained deep neural networks (DNNs) are not compatible with standard encoders and would be difficult to deply on personal computers and cellphones. In light of this, we propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends, an approach we call Neural JPEG. We propose frequency domain pre-editing and post-editing methods to optimize the distribution of the DCT coefficients at both encoder and decoder ends in order to improve the standard compression (JPEG) method. Moreover, we design and integrate a scheme for jointly learning quantization tables within this hybrid neural compression framework.Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics, such as PSNR and MS-SSIM, and generates visually appealing images with better color retention quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源