论文标题
可压缩的Euler和Navier-Stokes方程的熵稳定不连续的Galerkin离散的积极性策略
A positivity preserving strategy for entropy stable discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations
论文作者
论文摘要
可压缩的Euler和Navier-Stokes方程的高阶熵稳定的不连续的Galerkin方法需要热力学数量的阳性,以确保其拟合良好。在这项工作中,我们引入了一种阳性限制策略,用于通过将高阶解决方案与低阶阳性阳性离散化融合而构建的熵稳定的不连续的盖尔金离散化。提出的低阶离散化是半差异的熵稳定的,而拟议的限制策略是可压缩的Euler和Navier-Stokes方程的积极性。数值实验证实了拟议策略的高阶精度和鲁棒性。
High-order entropy-stable discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations require the positivity of thermodynamic quantities in order to guarantee their well-posedness. In this work, we introduce a positivity limiting strategy for entropy-stable discontinuous Galerkin discretizations constructed by blending high order solutions with a low order positivity-preserving discretization. The proposed low order discretization is semi-discretely entropy stable, and the proposed limiting strategy is positivity preserving for the compressible Euler and Navier-Stokes equations. Numerical experiments confirm the high order accuracy and robustness of the proposed strategy.