论文标题

通过增强学习对直接墨水写作的闭环控制

Closed-Loop Control of Direct Ink Writing via Reinforcement Learning

论文作者

Piovarci, Michal, Foshey, Michael, Xu, Jie, Erps, Timothy, Babaei, Vahid, Didyk, Piotr, Rusinkiewicz, Szymon, Matusik, Wojciech, Bickel, Bernd

论文摘要

使增材制造能够采用多种新颖的功能材料可以促进这项技术。但是,制作可打印的材料需要专家运营商艰苦的反复试验,因为它们通常倾向于表现出奇特的流变学或滞后性能。即使在成功找到过程参数的情况下,由于批次之间的物质差异,也无法保证打印到印刷的一致性。这些挑战使闭环反馈成为有吸引力的选项,在当时调整过程参数。设计有效的控制器面临一些挑战:沉积参数是复杂且高度耦合的,长时间范围后发生的伪影,模拟沉积的计算成本高昂,并且对硬件的学习是可行的。在这项工作中,我们证明了使用强化学习学习封闭环控制策略的可行性。我们表明,只要允许学习转化为现实世界经验的沉积行为模式,大概但有效的数值模拟就足够了。结合增强学习,我们的模型可用于发现超过基线控制器的控制策略。此外,回收的政策具有最小的SIM到真实空白。我们通过在单层直接的墨水写作打印机上应用我们的控制策略来展示这一点。

Enabling additive manufacturing to employ a wide range of novel, functional materials can be a major boost to this technology. However, making such materials printable requires painstaking trial-and-error by an expert operator, as they typically tend to exhibit peculiar rheological or hysteresis properties. Even in the case of successfully finding the process parameters, there is no guarantee of print-to-print consistency due to material differences between batches. These challenges make closed-loop feedback an attractive option where the process parameters are adjusted on-the-fly. There are several challenges for designing an efficient controller: the deposition parameters are complex and highly coupled, artifacts occur after long time horizons, simulating the deposition is computationally costly, and learning on hardware is intractable. In this work, we demonstrate the feasibility of learning a closed-loop control policy for additive manufacturing using reinforcement learning. We show that approximate, but efficient, numerical simulation is sufficient as long as it allows learning the behavioral patterns of deposition that translate to real-world experiences. In combination with reinforcement learning, our model can be used to discover control policies that outperform baseline controllers. Furthermore, the recovered policies have a minimal sim-to-real gap. We showcase this by applying our control policy in-vivo on a single-layer, direct ink writing printer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源