论文标题

Prym枚举几何形状和$ \ edline {\ Mathcal {r}} _ {2i} $中的hurwitz除数

Prym enumerative geometry and a Hurwitz divisor in $\overline{\mathcal{R}}_{2i}$

论文作者

Bud, Andrei

论文摘要

对于$ i \ geq2 $,我们计算了Prym曲线模型的理性Picard组中的类$ [\ overline {d}(μ; 3)] $的第一个系数存在$ 2i $ map $π\ colon c \ rightarrow \ mathbb {p}^1 $具有分支化配置文件$ $(2,\ ldots,2)$上方两个点$ q_1 $ q_1,q_2 $,在其他地方进行三重分支,并令人满意$ \ MATHCAL {O} _C(\ frac {π^{*}(q_1)-π^{*}(q_2)} {2})\ congη$。此外,我们还提供了与这种情况有关的几个新的列举结果。

For $i\geq2$, we compute the first coefficients of the class $[\overline{D}(μ;3)]$ in the rational Picard group of the moduli of Prym curves $\overline{\mathcal{R}}_{2i}$, where $D(μ;3)$ is the divisor parametrizing pairs $[C,η]$ for which there exists a degree $2i$ map $π\colon C\rightarrow \mathbb{P}^1$ having ramification profile $(2,\ldots,2)$ above two points $q_1, q_2$, a triple ramification somewhere else and satisfying $\mathcal{O}_C(\frac{π^{*}(q_1)-π^{*}(q_2)}{2})\cong η$. Furthermore, we provide several new Prym enumerative results related to this situation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源