论文标题
具有3个周期和通常相邻的4循环的平面图的多个DP颜色
Multiple DP-coloring of planar graphs without 3-cycles and normally adjacent 4-cycles
论文作者
论文摘要
图形的DP颜色的概念是Dvočkandand Postle在2015年引入的列表着色的概括。图形的多个DP色彩作为多个列表着色的概括,由Bernshteyn,Kostochka和Zhu进行了研究。2019年,该论文在2019年没有3个平面图。 2m)$ - DP色彩可用于每个整数$ m $。结果,没有3个周期的任何平面图的强大分数选择数和通常相邻的4循环最多是$ 7/2 $。
The concept of DP-coloring of a graph is a generalization of list coloring introduced by Dvořák and Postle in 2015. Multiple DP-coloring of graphs, as a generalization of multiple list coloring, was first studied by Bernshteyn, Kostochka and Zhu in 2019. This paper proves that planar graphs without 3-cycles and normally adjacent 4-cycles are $(7m, 2m)$-DP-colorable for every integer $m$. As a consequence, the strong fractional choice number of any planar graph without 3-cycles and normally adjacent 4-cycles is at most $7/2$.