论文标题
银河系在数值动作方法的8,000 km/s以内流动
Galaxy flows within 8,000 km/s from Numerical Action methods
论文作者
论文摘要
通过数值动作重建,发现具有CZ <8,000 km/s的星系系统(`halos')的Z = 4以来的轨迹。引起了关注的2级组目录和Cosmicflows-3目录中的9,719个光晕。调整当前距离以最大程度地减少与观察到的红移的偏离。对于那些距离最精确的距离的人,在距离和红移一致之间进行妥协。 $ h_0 $从69至77 km s $^{ - 1} $ mpc $^{ - 1} $,由$ω_m$ $ $ $ $ $ $ $ $ $Ω发现了质量到光线关系的最佳拟合幅度。与Interhalo培养基相关的均匀密度解释了该物质,而不是晕。解决方案路径提供了附近大型结构形成的历史,并描述了空隙的清空方式。假设没有局部超过/不高度,最好的模型具有$ H_0 = 73 $ km s $^{ - 1} $ mpc $^{ - 1} $,与Halos产生的密度几乎相同。我们通过改变IHM密度并沿$ H_0 = 73.0(1 +0.165Δ)$ km s $ s $^{ - 1} $ mpc $^{ - 1} $来检查局部过度/不足。在研究区域内部和外部的弗里德曼模型具有相似的关系。在N体模拟中看到的IHM中物质的一部分大致与我们的$ H_0 = 72 $方案匹配。创建了视频来可视化大规模结构的复杂性。标准的N体计算从第一个时间阶段开始作为NAM解决方案的测试,并一直持续到宇宙量表因子$ a = 2 $为未来提供瞥见。
The trajectories since z=4 of systems of galaxies (`halos') with cz < 8,000 km/s are found through Numerical Action reconstructions. A set of 9,719 halos from a 2MASS group catalog and Cosmicflows-3 catalogs are given attention. Present distances are adjusted to minimize departures from observed redshifts. For those with the most precisely determined distances, compromises are made between distance and redshift agreement. $H_0$ is varied from 69 to 77 km s$^{-1}$ Mpc$^{-1}$ with $Ω_m$ set by the baryon acoustic oscillation constraint from the Planck Satellite. A best fitting amplitude of the mass-to-light relation is found. A uniform density associated with the interhalo medium accounts for the matter not in halos. The solution paths provide the histories of the formation of the nearby large structures and depict how the voids emptied. Assuming no local over/underdensity, the best model has $H_0=73$ km s$^{-1}$ Mpc$^{-1}$ with nearly the same density arising from interhalo matter (IHM) as from halos. We examine local over/underdensities by varying the IHM density and find a valley of best fit models along $H_0 = 73.0 (1 + 0.165δ)$ km s$^{-1}$ Mpc$^{-1}$. Friedmann models with distinct densities internal and external to the study region give a similar relationship. The fraction of matter in the IHM seen in n-body simulations roughly matches that in our $H_0=72$ scenario. Videos have been created to visualize the complexities of formation of large-scale structures. Standard n-body calculations starting from the first time-steps as tests of the NAM solutions, and continue until cosmic scale factor $a=2$ provide glimpses into the future.