论文标题

测量误差对制造过程的多元爵士尾声控制图的影响

Effect of Measurement Errors on the Multivariate CUSUM CoDa Control Chart for the Manufacturing Process

论文作者

Imran, Muhammad, Sun, Jinsheng, Zaidi, Fatima Sehar, Abbas, Zameer, Nazir, Hafiz Zafar

论文摘要

控制图是统计过程控制(SPC)的主要工具之一,在制造业中已被广泛采用,作为过去几十年中故障检测的有效策略。测量错误(M.E)参与了感兴趣的质量特征。作者探讨了线性协变量误差模型对一种称为组成数据(CODA)的特定数据的多变量累积总和(CUSUM)控制图的影响。平均运行长度ARL用于评估提出的图表的性能。结果表明,M.E的显着影响多元Cusum-CoDA对照图。作者使用Markov链方法使用四种不同的情况来研究不同涉及参数的影响,以方差 - 可达矩阵(即与相等的方差不相关,与不相等的方差不相等,与不平等的方差无关,与不平等的方差正相关)。作者得出的结论是,多元cusum-Coda图表的ARL随着误差方差 - 可协方差矩阵的增加而增加,而ARL随着亚组大小M或恒定供电b的增加而减小。为了实施该提案,在M.E存在的情况下,已经报道了两个插图示例用于多元Cusum-Coda对照图。一个介绍了未涂层的阿司匹林片剂的制造过程,另一个是基于Muesli制造过程中的监视机。

Control charts, one of the main tools in Statistical Process Control (SPC), have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades. Measurement errors (M.E's) are involved in the quality characteristic of interest. The authors explored the impact of a linear covariate error model on the multivariate cumulative sum (CUSUM) control charts for a specific kind of data known as compositional data(CoDa). The average run length ARL is used to assess the performance of the proposed chart. The results indicate that M.E's significantly affects the multivariate CUSUM-CoDa control charts. The authors have used the Markov chain method to study the impact of different involved parameters using four different cases for the variance-covariance matrix (i.e. uncorrelated with equal variances, negatively correlated with equal variances, uncorrelated with unequal variances, positively correlated with unequal variances). The authors concluded that the ARL of the multivariate CUSUM-CoDa chart increase with an increase in the value of error variance-covariance matrix, while the ARL decreases with an increase in the subgroup size m or the constant powering b. For the implementation of the proposal, two illustrated examples have been reported for multivariate CUSUM-CoDa control charts in the presence of M.E's. One deals with the manufacturing process of uncoated aspirin tablets, and the other is based on monitoring machines in the muesli manufacturing process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源