论文标题

自然语言生成的生成合作网络

Generative Cooperative Networks for Natural Language Generation

论文作者

Lamprier, Sylvain, Scialom, Thomas, Chaffin, Antoine, Claveau, Vincent, Kijak, Ewa, Staiano, Jacopo, Piwowarski, Benjamin

论文摘要

生成的对抗网络(GAN)已经知道许多连续生成任务的成功,尤其是在图像生成领域。但是,对于诸如语言之类的离散输出,优化gans仍然是许多不稳定性的开放问题,因为没有梯度可以从鉴别器输出到生成器参数正确地回传。另一种选择是通过增强学习来学习发电机网络,以鉴别器信号为奖励,但是这种技术遭受了移动的奖励和消失的梯度问题。最后,与直接最大似然的方法相比,它通常掉落。在本文中,我们介绍了生成合作网络,其中歧视架构与生成策略一起使用,以输出现实的文本样本,以完成手头的任务。我们为我们的方法提供了融合的理论保证,并研究各种有效的解码方案,以实证实现最先进的结果,从而完成了两个主要的NLG任务。

Generative Adversarial Networks (GANs) have known a tremendous success for many continuous generation tasks, especially in the field of image generation. However, for discrete outputs such as language, optimizing GANs remains an open problem with many instabilities, as no gradient can be properly back-propagated from the discriminator output to the generator parameters. An alternative is to learn the generator network via reinforcement learning, using the discriminator signal as a reward, but such a technique suffers from moving rewards and vanishing gradient problems. Finally, it often falls short compared to direct maximum-likelihood approaches. In this paper, we introduce Generative Cooperative Networks, in which the discriminator architecture is cooperatively used along with the generation policy to output samples of realistic texts for the task at hand. We give theoretical guarantees of convergence for our approach, and study various efficient decoding schemes to empirically achieve state-of-the-art results in two main NLG tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源