论文标题
级别方法中的二维曲率计算的错误校正神经网络
Error-Correcting Neural Networks for Two-Dimensional Curvature Computation in the Level-Set Method
论文作者
论文摘要
我们提出了一种基于错误的神经模型模型,用于在级别集方法中近似二维曲率。我们的主要贡献是重新设计的混合求解器[Larios-Cárdenas和Gibou,J。Comput。物理。 (2022年5月),10.1016/j.jcp.2022.111291]依靠数值方案来按需启用机器学习操作。特别是,我们的常规特征是双重预测对线束曲率对称不变性,有利于精确和稳定性。该求解器的核心是在圆形和正弦式接口样品中训练的多层感知器。它的作用是量化数值曲率近似值中的误差,并沿自由边界发射精选的网格顶点的校正估计值。这些校正是针对预处理上下文级别,曲率和梯度数据而产生的。为了促进神经能力,我们采用了样品阴性曲率归一化,重新定位和基于反射的增强。以同样的方式,我们的系统结合了降低尺寸,平衡性良好和正则化,以最大程度地减少外围影响。我们的训练方法同样可以跨网格尺寸扩展。为此,我们在数据生产过程中引入了无量纲的参数化和概率子采样。总之,所有这些元素都提高了溶解区域周围曲率计算的准确性和效率。在大多数实验中,我们的策略的表现优于数值基线的重新构度数量的两倍,同时仅需要一小部分成本。
We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method. Our main contribution is a redesigned hybrid solver [Larios-Cárdenas and Gibou, J. Comput. Phys. (May 2022), 10.1016/j.jcp.2022.111291] that relies on numerical schemes to enable machine-learning operations on demand. In particular, our routine features double predicting to harness curvature symmetry invariance in favor of precision and stability. The core of this solver is a multilayer perceptron trained on circular- and sinusoidal-interface samples. Its role is to quantify the error in numerical curvature approximations and emit corrected estimates for select grid vertices along the free boundary. These corrections arise in response to preprocessed context level-set, curvature, and gradient data. To promote neural capacity, we have adopted sample negative-curvature normalization, reorientation, and reflection-based augmentation. In the same manner, our system incorporates dimensionality reduction, well-balancedness, and regularization to minimize outlying effects. Our training approach is likewise scalable across mesh sizes. For this purpose, we have introduced dimensionless parametrization and probabilistic subsampling during data production. Together, all these elements have improved the accuracy and efficiency of curvature calculations around under-resolved regions. In most experiments, our strategy has outperformed the numerical baseline at twice the number of redistancing steps while requiring only a fraction of the cost.