论文标题

大规模MIMO系统中联合学习的随机正交化

Random Orthogonalization for Federated Learning in Massive MIMO Systems

论文作者

Wei, Xizixiang, Shen, Cong, Yang, Jing, Poor, H. Vincent

论文摘要

我们提出了一种新型的上行链路通信方法,即在大量的多输入和多输出(MIMO)无线系统中为联合学习(FL)创造的随机正交化。随机正交化的关键新颖性来自FL模型聚集的紧密耦合以及大量MIMO的两个独特特征 - 通道硬化和有利的传播。结果,随机正交化可以实现自然的空中模型聚集,而无需发射器侧通道状态信息,同时大大降低了接收器的通道估计开销。对通信和机器学习表现进行了理论分析。特别是,融合率之间的明确关系,客户数量和天线数量已建立。实验结果证明了大型MIMO中FL随机正交化的有效性和效率。

We propose a novel uplink communication method, coined random orthogonalization, for federated learning (FL) in a massive multiple-input and multiple-output (MIMO) wireless system. The key novelty of random orthogonalization comes from the tight coupling of FL model aggregation and two unique characteristics of massive MIMO - channel hardening and favorable propagation. As a result, random orthogonalization can achieve natural over-the-air model aggregation without requiring transmitter side channel state information, while significantly reducing the channel estimation overhead at the receiver. Theoretical analyses with respect to both communication and machine learning performances are carried out. In particular, an explicit relationship among the convergence rate, the number of clients and the number of antennas is established. Experimental results validate the effectiveness and efficiency of random orthogonalization for FL in massive MIMO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源