论文标题
在字符串的准歧管上及其轨道层次
On string quasitoric manifolds and their orbit polytopes
论文作者
论文摘要
本文主要旨在赋予与字符串属性的准歧管的组合特征和拓扑描述。我们为维度2和3中的简单多层室提供了必要和充分的条件,可以将其作为字符串准歧管的轨道多型。特别是,获得了棱镜上的字符串准歧管的完整描述。另一方面,我们表征了字符串准歧管,超过$ n $二维的简单多型,不超过$ 2n+2 $ facets。当轨道多层室是立方体的连接和另一个简单的多层镜头时,就可以使用进一步的结果。另外,简要讨论了有关小封面的真正类似物。
This article mainly aims to give combinatorial characterizations and topological descriptions of quasitoric manifolds with string property. We provide a necessary and sufficient condition for a simple polytope in dimension 2 and 3 to be realizable as the orbit polytope of a string quasitoric manifold. In particular, a complete description of string quasitoric manifolds over prisms is obtained. On the other hand, we characterize string quasitoric manifolds over $n$-dimensional simple polytopes with no more than $2n+2$ facets. Further results are available when the orbit polytope is the connected sum of a cube and another simple polytope. In addtion, a real analogue concerning small cover is briefly discussed.