论文标题
Reeb络合物和拓扑持久性
Reeb complexes and topological persistence
论文作者
论文摘要
我们介绍了Reeb复合物,以捕获同源性发电机如何沿着真实有价值的连续功能的部分流动。这种直觉表明,在拓扑数据分析(例如levelset锯齿形和持续的同源性)中,Reeb复合物与已建立的方法有着密切的关系。我们使这种关系精确,特别是解释了如何从相同终止的各个光谱序列的第一页中提取Reeb复合物和水平集曲折。
We introduce Reeb complexes in order to capture how generators of homology flow along sections of a real valued continuous function. This intuition suggests a close relation of Reeb complexes to established methods in topological data analysis such as levelset zigzags and persistent homology. We make this relation precise and in particular explain how Reeb complexes and levelset zigzags can be extracted from the first pages of respective spectral sequences with the same termination.