论文标题

旋转和生长暗物质光环的平均流量,速度分散,能量传递和演变

The mean flow, velocity dispersion, energy transfer and evolution of rotating and growing dark matter halos

论文作者

Xu, Zhijie

论文摘要

通过将速度扩散分解为非自旋和自旋诱导的,平均流量和分散液可以分析用于轴对称旋转和生长的光晕。极性流可以被忽略,方位角流与分散直接相关。虚拟(“雷诺”)应力在平均流动上起作用,从而使能量从平均流动到随机运动并最大化系统熵。对于持续浓度的大晕圈(高峰高$ν$),存在一个自相似的径向流动(核心向外,外部区域内)。光环质量,大小和特定角动量通过快速积聚随时间线性增加。光环芯旋转速度比外部区域快。大晕圈以与哈勃参数成正比的角速度旋转,并且自旋诱导的分散体是主要的。所有特定的能量(径向/旋转/动力学/电势)都是时间不变的。可以分析启发Halo Spin($ \ sim $ 0.031)和各向异性参数。对于具有稳定核心和缓慢积聚的“小”光环(低峰高$ν$在光环寿命的后期),径向流量消失。小晕圈以恒定的角速度旋转,非自旋轴向色散是主要的。小晕孔的形状是球形的,不可压缩的和各向同性的。径向和方位角分散剂具有比较,并且大于极性分散体。由于自旋的旋转,动能不会沿方位角用最大的能量等式。与正常物质不同,小晕孔更热,自旋速度更快。从早期到晚期的光晕放松涉及形状,密度,平均流动,动量和能量的变化。在松弛过程中,晕圈同位素具有保守的特定旋转动能,增加浓度和惯性动量。光环“拉伸”导致角速度降低,增加角动量和自旋参数。

By decomposing velocity dispersion into non-spin and spin-induced, mean flow and dispersion are analytically solved for axisymmetric rotating and growing halos. The polar flow can be neglected and azimuthal flow is directly related to dispersion. The fictitious ("Reynolds") stress acts on mean flow to enable energy transfer from mean flow to random motion and maximize system entropy. For large halos (high peak height $ν$ at early stage of halo life) with constant concentration, there exists a self-similar radial flow (outward in core and inward in outer region). Halo mass, size and specific angular momentum increase linearly with time via fast mass accretion. Halo core spins faster than outer region. Large halos rotate with an angular velocity proportional to Hubble parameter and spin-induced dispersion is dominant. All specific energies (radial/rotational/kinetic/potential) are time-invariant. Both halo spin ($\sim$0.031) and anisotropic parameters can be analytically derived. For "small" halos with stable core and slow mass accretion (low peak height $ν$ at late stage of halo life), radial flow vanishes. Small halos rotate with constant angular velocity and non-spin axial dispersion is dominant. Small halos are spherical in shape, incompressible, and isotropic. Radial and azimuthal dispersion are comparable and greater than polar dispersion. Due to finite spin, kinetic energy is not equipartitioned with the greatest energy along azimuthal direction. Different from normal matter, small halos are hotter with faster spin. Halo relaxation from early to late stage involves variation of shape, density, mean flow, momentum, and energy. During relaxation, halo isotopically "stretches" with conserved specific rotational kinetic energy, increasing concentration and momentum of inertial. Halo "stretching" leads to decreasing angular velocity, increasing angular momentum and spin parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源