论文标题
完全歧管上正标曲率的几何形状
Geometry of positive scalar curvature on complete manifold
论文作者
论文摘要
在本文中,我们研究了与非阴性RICCI曲率的完整的非紧密歧管上的几何相互作用和阳性标态曲率的相互作用。在三维歧管中,我们证明体积的生长最小,是标量曲率和宽度不可或缺的估计值。在较高的尺寸歧管中,我们获得了具有更强条件的体积增长。
In this paper, we study the interplay of geometry and positive scalar curvature on a complete, non-compact manifold with non-negative Ricci curvature. In three-dimensional manifold, we prove a minimal volume growth, an estimate of integral of scalar curvature and width. In higher dimensional manifold, we obtain a volume growth with a stronger condition.