论文标题

双曲带理论通过希格斯束

Hyperbolic band theory through Higgs bundles

论文作者

Kienzle, Elliot, Rayan, Steven

论文摘要

双曲线晶格是一种新形式的量子物质形式,并具有潜在的量子计算和仿真应用,并且迄今为止已进行了人工设计。出现了相应的双曲带理论,以一种自然的方式扩展了二维欧几里得条带理论,以使其延伸到更高的配置空间。试图开发Bloch定理的双曲线类似物的尝试揭示了代数几何模量空间的内在作用,尤其是曲线上稳定束的空间。我们将此图片扩展到包括希格斯捆绑包,这些捆绑包在乐队理论的背景下享有自然解释。首先,它们的光谱数据编码晶体晶格和动量,为对称双曲线晶体提供了一个框架。其次,它们充当晶体动量的复杂类似物。作为应用程序,我们引起了欧几里得乐队理论的新观点。最后,我们推测了双曲线理论的潜在相互作用,这是由希格斯束促进的,以及数学和物理学领域的其他主题。

Hyperbolic lattices underlie a new form of quantum matter with potential applications to quantum computing and simulation and which, to date, have been engineered artificially. A corresponding hyperbolic band theory has emerged, extending 2-dimensional Euclidean band theory in a natural way to higher-genus configuration spaces. Attempts to develop the hyperbolic analogue of Bloch's theorem have revealed an intrinsic role for algebro-geometric moduli spaces, notably those of stable bundles on a curve. We expand this picture to include Higgs bundles, which enjoy natural interpretations in the context of band theory. First, their spectral data encodes a crystal lattice and momentum, providing a framework for symmetric hyperbolic crystals. Second, they act as a complex analogue of crystal momentum. As an application, we elicit a new perspective on Euclidean band theory. Finally, we speculate on potential interactions of hyperbolic band theory, facilitated by Higgs bundles, with other themes in mathematics and physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源