论文标题
关于$ h^\ infty $最大理想空间的分析结构
On the analytic structure of the $H^\infty$ maximal ideal space
论文作者
论文摘要
我们描述了代数$ h^\ infty \ circ l_ {m} $,其中$ m $是$ h^\ infty $的最大理想空间的一个点,具有非平凡的gleason part $ p(m)$ p(m)$和$ l_ {m {m}:\ mathbb {d} \ p(m)$是coorday hoff hoff hoff hoff hoff hoff hoff hoff hoff hoff hoff hoff。特别是,对于任何连续函数,$ f:p(m)\ to \ mathbb {c} $带有$ f \ circ l_ {m} \ in H^\ infty $中存在$ f \ in h^\ infty $中的$ f \ in h^\ infty $,因此$ f | _ {p(m)} = f $。
We characterize the algebra $H^\infty \circ L_{m}$, where $m$ is a point of the maximal ideal space of $H^\infty$ with nontrivial Gleason part $P(m)$ and $L_{m} : \mathbb{D}\to P(m)$ is the coordinate Hoffman map. In particular, it is shown that for any continuous function $f: P(m) \to \mathbb{C}$ with $f\circ L_{m} \in H^\infty$ there exists $F\in H^\infty$ such that $F|_{P(m)} = f$.