论文标题

边缘网络:用于层次形状结构的无监督学习的递归隐式领域

RIM-Net: Recursive Implicit Fields for Unsupervised Learning of Hierarchical Shape Structures

论文作者

Niu, Chengjie, Li, Manyi, Xu, Kai, Zhang, Hao

论文摘要

我们介绍了RIM-NET,这是一个神经网络,该神经网络学习递归隐式领域,以无监督的分层形状结构的推断。我们的网络将输入3D形状分解为两个部分,从而产生了二进制树的层次结构。树的每个级别对应于形状部分组装,称为隐式函数,以重建输入形状。在树的每个节点上,同时的特征解码和形状分解是通过其各自的特征和部分解码器进行的,重量共享跨相同的层次结构级别。作为隐式场解码器,该零件解码器旨在通过双向分支重建分解子形状,其中每个分支都预测了一组定义高斯以作为形状重建的局部点分布的参数。由于重建损失在每个层次结构级别占据,并且在每个节点处造成分解损失,因此我们的网络培训不需要任何基础真相细分,更不用说层次结构了。通过广泛的实验和与最先进的替代方案的比较,我们证明了RIM-NET对层次结构推断的质量,一致性和解释性。

We introduce RIM-Net, a neural network which learns recursive implicit fields for unsupervised inference of hierarchical shape structures. Our network recursively decomposes an input 3D shape into two parts, resulting in a binary tree hierarchy. Each level of the tree corresponds to an assembly of shape parts, represented as implicit functions, to reconstruct the input shape. At each node of the tree, simultaneous feature decoding and shape decomposition are carried out by their respective feature and part decoders, with weight sharing across the same hierarchy level. As an implicit field decoder, the part decoder is designed to decompose a sub-shape, via a two-way branched reconstruction, where each branch predicts a set of parameters defining a Gaussian to serve as a local point distribution for shape reconstruction. With reconstruction losses accounted for at each hierarchy level and a decomposition loss at each node, our network training does not require any ground-truth segmentations, let alone hierarchies. Through extensive experiments and comparisons to state-of-the-art alternatives, we demonstrate the quality, consistency, and interpretability of hierarchical structural inference by RIM-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源