论文标题

部分可观测时空混沌系统的无模型预测

Improving Robustness by Enhancing Weak Subnets

论文作者

Guo, Yong, Stutz, David, Schiele, Bernt

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Despite their success, deep networks have been shown to be highly susceptible to perturbations, often causing significant drops in accuracy. In this paper, we investigate model robustness on perturbed inputs by studying the performance of internal sub-networks (subnets). Interestingly, we observe that most subnets show particularly poor robustness against perturbations. More importantly, these weak subnets are correlated with the overall lack of robustness. Tackling this phenomenon, we propose a new training procedure that identifies and enhances weak subnets (EWS) to improve robustness. Specifically, we develop a search algorithm to find particularly weak subnets and explicitly strengthen them via knowledge distillation from the full network. We show that EWS greatly improves both robustness against corrupted images as well as accuracy on clean data. Being complementary to popular data augmentation methods, EWS consistently improves robustness when combined with these approaches. To highlight the flexibility of our approach, we combine EWS also with popular adversarial training methods resulting in improved adversarial robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源