论文标题
关于罗曼诺夫类型的问题
On a problem of Romanoff type
论文作者
论文摘要
令$ \ mathcal {p} $和$ \ mathbb {n} $分别为所有素数和自然数的集合。在本文中,事实证明,自然数的较低密度可以由$ p+p+2^{m_1^2}+2^{m_2^2},p \ in \ mathcal {p},m_1,m_1,m_2,m_2 \ in \ mathbb {n}。
Let $\mathcal{P}$ and $\mathbb{N}$ be the sets of all primes and natural numbers, respectively. In this article, it is proved that there has a positive lower density of the natural numbers which can be represented by the form $$p+2^{m_1^2}+2^{m_2^2},p\in \mathcal{P},m_1,m_2\in \mathbb{N}.$$ This solves a problem of Chen and Yang in 2014.