论文标题
涉及零和序列的有限阿贝尔组的互惠II
A reciprocity on finite abelian groups involving zero-sum sequences II
论文作者
论文摘要
让$ g $为有限的阿贝尔集团。对于任何正整数$ d $和$ m $,让$φ_g(d)$是订单$ d $和$ \ \ m nathsf m(g,m)$的元素的数量,是所有长度$ m $的所有零和序列的集合。在本文中,对于任何有限的Abelian组$ H $,我们证明$ | \ Mathsf m(g,| h |)| = | \ Mathsf m(h,| g |)| $$ if,仅当$ d | g | h | h | h |)$ nif $ $φ_g(d)=φ_h(d)=φ_h(d)$。我们还将这种结果扩展到不变理论方面向非亚伯群体进行了扩展。
Let $G$ be a finite abelian group. For any positive integers $d$ and $m$, let $φ_G(d)$ be the number of elements in $G$ of order $d$ and $\mathsf M(G,m)$ be the set of all zero-sum sequences of length $m$. In this paper, for any finite abelian group $H$, we prove that $$|\mathsf M(G,|H|)|=|\mathsf M(H,|G|)|$$ if and only if $φ_G(d)=φ_H(d)$ for any $d|(|G|,|H|)$. We also consider an extension of this result to non-abelian groups in terms of invariant theory.