论文标题

一种用$α$稳定的lévy噪声提取随机动力学系统的端到端深度学习方法

An end-to-end deep learning approach for extracting stochastic dynamical systems with $α$-stable Lévy noise

论文作者

Fang, Cheng, Lu, Yubin, Gao, Ting, Duan, Jinqiao

论文摘要

最近,通过深度学习框架提取动态系统的数据驱动法则在各个领域引起了很多关注。此外,越来越多的研究工作倾向于将确定性动力学系统转移到随机动力学系统上,尤其是由非高斯乘法噪声驱动的系统。但是,对于高斯病例,许多基于对数的基于日志的算法不能直接扩展到非高斯场景,而非高斯场景可能会有很高的错误和低收敛问题。在这项工作中,我们克服了其中的一些挑战,并确定了由$α$稳定的lévy噪声驱动的随机动力系统,仅来自随机的成对数据。我们的创新包括:(1)设计一种深度学习方法,以学习莱维(Lévy)感应噪声的漂移和扩散系数,并在所有值中$α$学习$α$,(2)学习复杂的多重噪声,而无需限制小噪声强度,(3)提出在一般输入数据下的端到端端到端完整框架,以随机的变量,$ a $ a $ a,$ a $ a。最后,数值实验和与非本地KRAMERS-MOYAL公式与力矩生成函数的比较证实了我们方法的有效性。

Recently, extracting data-driven governing laws of dynamical systems through deep learning frameworks has gained a lot of attention in various fields. Moreover, a growing amount of research work tends to transfer deterministic dynamical systems to stochastic dynamical systems, especially those driven by non-Gaussian multiplicative noise. However, lots of log-likelihood based algorithms that work well for Gaussian cases cannot be directly extended to non-Gaussian scenarios which could have high error and low convergence issues. In this work, we overcome some of these challenges and identify stochastic dynamical systems driven by $α$-stable Lévy noise from only random pairwise data. Our innovations include: (1) designing a deep learning approach to learn both drift and diffusion coefficients for Lévy induced noise with $α$ across all values, (2) learning complex multiplicative noise without restrictions on small noise intensity, (3) proposing an end-to-end complete framework for stochastic systems identification under a general input data assumption, that is, $α$-stable random variable. Finally, numerical experiments and comparisons with the non-local Kramers-Moyal formulas with moment generating function confirm the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源