论文标题

当前的相关性,凹陷的重量和盒球系统中的较大偏差

Current correlations, Drude weights and large deviations in a box-ball system

论文作者

Kuniba, Atsuo, Misguich, Grégoire, Pasquier, Vincent

论文摘要

我们探索了当前波动系统(BBS)中当前波动和相关性的几个方面,该系统是一个空间维度中的可集成的蜂窝自动机。我们认为的状态是微观配置的合奏,其中盒子占用是独立的随机变量(I.I.D.状态),具有给定的平均球密度。我们在这种均匀的固定状态下精确计算了几个数量:在时间$ t $期间,$ n_t $跨越原点的平均值和差异,以及与$ n_t $相关的缩放累积物生成功能。我们还计算了两个空间整合的电流相关性。第一个涉及当前流动相关性的长期极限的是所谓的Drude重量,并用热力学Bethe Ansatz(TBA)获得。第二个涉及相等的时间电流相关性的第二个是使用传输矩阵方法计算的。建立了与保守的电荷和不同时间演变相关的广义电流家族。它们的相关性的长期限制概括了$ n_t $的第二累积重量和第二个累积的限制,并被发现遵守非平凡的对称关系。它们是使用TBA计算的,结果发现结果与模型的微观模拟非常吻合。 TBA还用于明确计算整个通量雅各布矩阵。最后,其中一些结果将扩展到(非I.I.D。)两个植物的概括(一个参数耦合到球总数,另一个参数耦合,另一个耦合到孤子总数)。

We explore several aspects of the current fluctuations and correlations in the box-ball system (BBS), an integrable cellular automaton in one space dimension. The state we consider is an ensemble of microscopic configurations where the box occupancies are independent random variables (i.i.d. state), with a given mean ball density. We compute several quantities exactly in such homogeneous stationary state: the mean value and the variance of the number of balls $N_t$ crossing the origin during time $t$, and the scaled cumulants generating function associated to $N_t$. We also compute two spatially integrated current-current correlations. The first one, involving the long-time limit of the current-current correlations, is the so-called Drude weight and is obtained with thermodynamic Bethe Ansatz (TBA). The second one, involving equal time current-current correlations is calculated using a transfer matrix approach. A family of generalized currents, associated to the conserved charges and to the different time evolutions of the models are constructed. The long-time limits of their correlations generalize the Drude weight and the second cumulant of $N_t$ and are found to obey nontrivial symmetry relations. They are computed using TBA and the results are found to be in good agreement with microscopic simulations of the model. TBA is also used to compute explicitly the whole family of flux Jacobian matrices. Finally, some of these results are extended to a (non-i.i.d.) two-temperatures generalized Gibbs state (with one parameter coupled to the total number of balls, and another one coupled to the total number of solitons).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源