论文标题
解决粒子 - 抗粒子和宇宙恒定问题
Solving particle-antiparticle and cosmological constant problems
论文作者
论文摘要
我们认为,粒子理论中的基本对象不是基本粒子和反粒子,而是由de Sitter(DS)代数的不可约描述(IRS)描述的对象。可能会问为什么,为什么实验数据给人的印象是颗粒和反粒子是基本的,并且有保守的附加量子数(电荷,baryon量子数等)。问题是,在宇宙的目前阶段,从DS到Poincare代数的收缩参数$ r $非常大,并且在正式的限制$ r \至\ infty $中,DS代数的一个IR分解为两种IRS的POINCARE代数代数,与粒子相对应,与同一群体相对应。为什么数量$ $(C,\ HBAR,R)$的问题是不出现的,因为它们是从更通用的代数到较少通用的偏移的收缩参数。然后,不会出现宇宙问题的重子不对称。在宇宙的目前阶段,宇宙学加速度(PCA)的现象被描述为没有不确定性是半经典近似中量子理论的必然结果。特别是,没有必要涉及黑能的物理含义是一个谜。在我们的方法中,背景空间及其几何形状不使用,$ r $与DS空间的半径无关。在半经典近似中,如果$λ= 3/r^2 $,即$λ> 0 $,PCA的结果与一般相对性相同,选择$λ$的值没有自由。
We argue that fundamental objects in particle theory are not elementary particles and antiparticles but objects described by irreducible representations (IRs) of the de Sitter (dS) algebra. One might ask why, then, experimental data give the impression that particles and antiparticles are fundamental and there are conserved additive quantum numbers (electric charge, baryon quantum number and others). The matter is that, at the present stage of the universe, the contraction parameter $R$ from the dS to the Poincare algebra is very large and, in the formal limit $R\to\infty$, one IR of the dS algebra splits into two IRs of the Poincare algebra corresponding to a particle and its antiparticle with the same masses. The problem why the quantities $(c,\hbar,R)$ are as are does not arise because they are contraction parameters for transitions from more general Lie algebras to less general ones. Then the baryon asymmetry of the universe problem does not arise. At the present stage of the universe, the phenomenon of cosmological acceleration (PCA) is described without uncertainties as an inevitable {\it kinematical} consequence of quantum theory in semiclassical approximation. In particular, it is not necessary to involve dark energy the physical meaning of which is a mystery. In our approach, background space and its geometry are not used and $R$ has nothing to do with the radius of dS space. In semiclassical approximation, the results for PCA are the same as in General Relativity if $Λ=3/R^2$, i.e., $Λ>0$ and there is no freedom in choosing the value of $Λ$.