论文标题

解决平行仪的三维差异方程的库奇问题

Solving the Cauchy problem for a three-dimensional difference equation in a parallelepiped

论文作者

Apanovich, Marina S., Lyapin, Alexander P., Shadrin, Konstantin V.

论文摘要

本文的目的是进一步发展具有恒定系数的线性差方程理论。我们提出了一种新算法,用于计算三维差异方程的解决方案,并使用差异方程和库奇数据的系数在该点并行静止的三维差异方程。实施的算法是一系列文章中的下一个重大成就,证明了Apanovich和Leinartas定理有关库奇问题的解决性和良好性的定理。我们还使用计算机代数的方法,因为三维情况通常需要扩展计算。

The aim of this article is further development of the theory of linear difference equations with constant coefficients. We present a new algorithm for calculating the solution to the Cauchy problem for a three-dimensional difference equation with constant coefficients in a parallelepiped at the point using the coefficients of the difference equation and Cauchy data. The implemented algorithm is the next significant achievement in a series of articles justifying the Apanovich and Leinartas' theorems about the solvability and well-posedness of the Cauchy problem. We also use methods of computer algebra since the three-dimensional case usually demands extended calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源