论文标题

超声弹性估计的卷积神经网络的双向半监督培训

Bi-Directional Semi-Supervised Training of Convolutional Neural Networks for Ultrasound Elastography Displacement Estimation

论文作者

Tehrani, Ali K. Z., Sharifzadeh, Mostafa, Boctor, Emad, Rivaz, Hassan

论文摘要

超声弹性图(使用)的性能在很大程度上取决于位移估计的准确性。最近,卷积神经网络(CNN)在光流估计中显示出有希望的性能,并已被用于使用位移估计。在计算机视觉图像上训练的网络没有优化用于使用位移估计的网络,因为计算机视觉图像与高频射频(RF)超声数据之间存在较大差距。许多研究人员试图通过应用转移学习来提高CNN使用的性能来采用光流CNN。但是,实际超声数据中的地面真相位移尚不清楚,与真实数据相比,模拟数据显示出域的变化,并且生成的计算昂贵。为了解决此问题,已经提出了半监督的方法,其中使用真实的超声数据对计算机视觉图像进行预训练的网络进行了微调。在本文中,我们通过利用正规化位移场的一阶和二阶导数来采用半监督方法。我们还修改了网络结构以估计向前和向后位移,并建议将前向和向后菌株之间的一致性作为附加的正常化器,以进一步提高性能。我们使用几个实验幻影和体内数据验证我们的方法。我们还表明,通过我们提出的方法对使用实验幻影数据进行微调的网络在体内数据上的性能很好,类似于在体内数据上进行微调的网络。我们的结果还表明,所提出的方法的表现优于当前的深度学习方法,并且与基于计算昂贵的优化算法相媲美。

The performance of ultrasound elastography (USE) heavily depends on the accuracy of displacement estimation. Recently, Convolutional Neural Networks (CNN) have shown promising performance in optical flow estimation and have been adopted for USE displacement estimation. Networks trained on computer vision images are not optimized for USE displacement estimation since there is a large gap between the computer vision images and the high-frequency Radio Frequency (RF) ultrasound data. Many researchers tried to adopt the optical flow CNNs to USE by applying transfer learning to improve the performance of CNNs for USE. However, the ground truth displacement in real ultrasound data is unknown, and simulated data exhibits a domain shift compared to the real data and is also computationally expensive to generate. To resolve this issue, semi-supervised methods have been proposed wherein the networks pre-trained on computer vision images are fine-tuned using real ultrasound data. In this paper, we employ a semi-supervised method by exploiting the first and second-order derivatives of the displacement field for the regularization. We also modify the network structure to estimate both forward and backward displacements, and propose to use consistency between the forward and backward strains as an additional regularizer to further enhance the performance. We validate our method using several experimental phantom and in vivo data. We also show that the network fine-tuned by our proposed method using experimental phantom data performs well on in vivo data similar to the network fine-tuned on in vivo data. Our results also show that the proposed method outperforms current deep learning methods and is comparable to computationally expensive optimization-based algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源