论文标题
LFI和HFI Planck数据版本4的频率依赖性约束4
Frequency-Dependent Constraints on Cosmic Birefringence from the LFI and HFI Planck Data Release 4
论文作者
论文摘要
我们提出了从普朗克数据释放4个极化图的宇宙双向角度的频率依赖性的新约束。耦合到电磁剂的轴向场预测了几乎与频率无关的双重角度,$β_ν=β$,而局部磁场和洛伦兹的法拉第旋转违反了理论,可以预测cosmic birefringence角度与频率成比例,$ n $ n $ n $ n $ n $ $βendn $ n $ n $ n $ nbent $ n $ nbe。在这项工作中,除了LFI的70 GHz通道外,我们首先为每个极化HFI频带单独采样$β_ν$。我们还限制了双重范围角度的幂律公式,$β_ν=β_0(ν/ν_0)^n $,$ν_0= 150 $ GHz。对于几乎全套的测量,$ f _ {\ text {sky}} = 0.93 $,我们发现$β_0= 0.26^{\ circ} \ pm0.11^\ circ $ $(68 \%\%\%\ text {c.l。}) $ eb $ $ $相关性的相关性和$β_0= 0.33^\ circ \ pm pm 0.12^\ circ $和$ n = -0.37^{+0.49} _ { - 0.64} $当我们使用firmentary dust Model for The Forcgromentary Dust Model for the Facefform $ eb $。接下来,我们使用所有偏光planck地图,包括30和44 GHz频带。这些频段具有偏光灰尘发射的前景贡献可忽略不计。因此,我们分别对待它们。没有任何前景的内在$ eb $建模,我们通常会发现包含30和44 GHz频带会提高$β_ν$的测量值并收紧$ n $。在几乎全天候,我们测量$β_0= 0.29^{\ Circ+0.10^\ Circ} _ {\ phantom {\ circ} -0.11^\ circ} $和$ n = -0.35^{+0.48} _ { - 0.47} $。假设没有频率依赖性,我们测量$β= 0.33^\ Circ \ PM 0.10^\ Circ $。如果我们的测量结果有效地减轻了前景的$ EB $,那么我们的约束与宇宙双折射的主要独立信号一致。
We present new constraints on the frequency dependence of the cosmic birefringence angle from the Planck data release 4 polarization maps. An axion field coupled to electromagnetism predicts a nearly frequency-independent birefringence angle, $β_ν= β$, while Faraday rotation from local magnetic fields and Lorentz violating theories predict a cosmic birefringence angle that is proportional to the frequency, $ν$, to the power of some integer $n$, $β_ν\propto ν^n$. In this work, we first sample $β_ν$ individually for each polarized HFI frequency band in addition to the 70 GHz channel from the LFI. We also constrain a power-law formula for the birefringence angle, $β_ν=β_0(ν/ν_0)^n$, with $ν_0 = 150$ GHz. For a nearly full-sky measurement, $f_{\text{sky}}=0.93$, we find $β_0 = 0.26^{\circ}\pm0.11^\circ$ $(68\% \text{ C.L.})$ and $n=-0.45^{+0.61}_{-0.82}$ when we ignore the intrinsic $EB$ correlations of the polarized foreground emission, and $β_0 = 0.33^\circ \pm 0.12^\circ$ and $n=-0.37^{+0.49}_{-0.64}$ when we use a filamentary dust model for the foreground $EB$. Next, we use all the polarized Planck maps, including the 30 and 44 GHz frequency bands. These bands have a negligible foreground contribution from polarized dust emission. We, therefore, treat them separately. Without any modeling of the intrinsic $EB$ of the foreground, we generally find that the inclusion of the 30 and 44 GHz frequency bands raises the measured values of $β_ν$ and tightens $n$. At nearly full-sky, we measure $β_0=0.29^{\circ+0.10^\circ}_{\phantom{\circ}-0.11^\circ}$ and $n=-0.35^{+0.48}_{-0.47}$. Assuming no frequency dependence, we measure $β=0.33^\circ \pm 0.10^\circ$. If our measurements have effectively mitigated the $EB$ of the foreground, our constraints are consistent with a mostly frequency-independent signal of cosmic birefringence.