论文标题

来自特殊速度示踪剂的野外物理推断

Field-Based Physical Inference From Peculiar Velocity Tracers

论文作者

Prideaux-Ghee, James, Leclercq, Florent, Lavaux, Guilhem, Heavens, Alan, Jasche, Jens

论文摘要

我们提出了一种贝叶斯分层建模方法,以重建受特殊速度观测的限制的初始宇宙物质密度场。由于我们的方法具有一个模型,用于将初始条件与延迟观测联系起来,因此将最终密度和速度场重建为天然副产品。我们通过从星系(BORG)算法调整贝叶斯起源重建来实现这种基于现场的物理推理方法,该算法通过使用汉密尔顿蒙特卡洛采样来探索高维后验。我们使用随机的模拟示踪剂集测试该方法的自矛盾,并在更复杂的场景中评估其准确性,在更复杂的情况下,特殊的速度示踪剂是非线性进化的模拟光环。我们发现我们的框架是自愿渗透的,它会吸收初始条件,密度和速度场,并显示出对模型错误指定的鲁棒性。与受约束的高斯随机场/维也纳过滤的最新方法相比,我们的方法会产生更准确的最终密度和速度场重建。它还使我们能够通过特殊的速度观测来限制初始条件,并根据其他宇宙学可观察到的以前基于现场的方法进行补充。

We present a Bayesian hierarchical modelling approach to reconstruct the initial cosmic matter density field constrained by peculiar velocity observations. As our approach features a model for the gravitational evolution of dark matter to connect the initial conditions to late-time observations, it reconstructs the final density and velocity fields as natural byproducts. We implement this field-based physical inference approach by adapting the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm, which explores the high-dimensional posterior through the use of Hamiltonian Monte Carlo sampling. We test the self-consistency of the method using random sets of mock tracers, and assess its accuracy in a more complex scenario where peculiar velocity tracers are non-linearly evolved mock haloes. We find that our framework self-consistently infers the initial conditions, density and velocity fields, and shows some robustness to model mis-specification. As compared to the state-of-the-art approach of constrained Gaussian random fields/Wiener filtering, our method produces more accurate final density and velocity field reconstructions. It also allows us to constrain the initial conditions by peculiar velocity observations, complementing in this aspect previous field-based approaches based on other cosmological observables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源