论文标题
通用的虚拟多面体和准歧管
Generalized virtual polytopes and quasitoric manifolds
论文作者
论文摘要
在本文中,我们根据对实际欧几里得空间中仿射子空间布置的拓扑的研究制定了广义虚拟多面体的多项式理论。我们将该理论应用于BKK定理,Stanley-Reisner和Pukhlikov-Khovanskii类型的拓扑版本,用于广义准歧管的共同体学环。
In this paper we develop a theory of volume polynomials of generalized virtual polytopes based on the study of topology of affine subspace arrangements in a real Euclidean space. We apply this theory to obtain a topological version of the BKK Theorem, the Stanley-Reisner and Pukhlikov-Khovanskii type descriptions for cohomology rings of generalized quasitoric manifolds.