论文标题
部分可观测时空混沌系统的无模型预测
An Ising machine based on networks of subharmonic electrical resonators
论文作者
论文摘要
我们探讨了一个经典电子振荡器网络的示例,该示例朝着解决复杂优化问题的解决方案发展。我们表明,当驱动到亚谐波响应中时,这种非线性电气谐振器的网络可以最大程度地减少非平凡图上的伊辛·哈密顿式的,例如抗磁性耦合的recpled rewired-m {Ö} bius bius梯子。在这种情况下,ISING机器的旋转和降低状态由振荡器在偶数或奇数驱动周期上的响应表示。我们通过可编程开关矩阵耦合的驱动非线性振荡器的实验设置可在存在此类式的矩阵时产生独特的能量最小化器,并在适当的情况下探究挫败感。电子振荡器及其耦合的理论建模使我们能够准确地重现实验结果的定性特征。这表明该设置是探索这种非常规计算平台的功能和局限性的原型典型的承诺。
We explore a case example of networks of classical electronic oscillators evolving towards the solution of complex optimization problems. We show that when driven into subharmonic response, a network of such nonlinear electrical resonators can minimize the Ising Hamiltonian on non-trivial graphs such as antiferromagnetically coupled rewired-M{ö}bius ladders. In this context, the spin-up and spin-down states of the Ising machine are represented by the oscillators' response at the even or odd driving cycles. Our experimental setting of driven nonlinear oscillators coupled via a programmable switch matrix leads to a unique energy minimizer when one such exists, and probes frustration where appropriate. Theoretical modeling of the electronic oscillators and their couplings allows us to accurately reproduce the qualitative features of the experimental results. This suggests the promise of this setup as a prototypical one for exploring the capabilities and limitations of such an unconventional computing platform.