论文标题

自动编码器吸引子进行不确定性估计

Autoencoder Attractors for Uncertainty Estimation

论文作者

Da Cruz, Steve Dias, Taetz, Bertram, Stifter, Thomas, Stricker, Didier

论文摘要

机器学习模型预测的可靠性评估是安全关键应用中部署的重要数量。它不仅可以用作脱离或异常样本来检测新型风景,而且还可以帮助确定训练数据分布中的缺陷。许多有前途的研究方向都提出了传统方法,例如高斯流程,或者提出了基于深度学习的方法,例如,从贝叶斯的角度解释它们。在这项工作中,我们提出了一种基于自动编码器模型的不确定性估计的新方法:以前训练的自动编码器模型的递归应用可以解释为一种动态系统存储培训示例作为吸引者。虽然接近已知样品的输入图像将收敛到相同或相似的吸引子,但包含未知特征的输入样品不稳定,并通过可能删除或变化的特征特征来收敛到不同的训练样本。在训练和推理期间使用辍学的方法导致一个类似的动力学系统的家庭,每个家庭都对接近训练分布的样品具有强大的功能,但在新功能上不稳定。该模型可靠地删除了这些功能,或者可以利用所产生的不稳定性来检测有问题的输入样本。我们在几个数据集组合以及在车辆内部的乘员分类应用程序上评估了我们的方法,我们还会发布新的合成数据集。

The reliability assessment of a machine learning model's prediction is an important quantity for the deployment in safety critical applications. Not only can it be used to detect novel sceneries, either as out-of-distribution or anomaly sample, but it also helps to determine deficiencies in the training data distribution. A lot of promising research directions have either proposed traditional methods like Gaussian processes or extended deep learning based approaches, for example, by interpreting them from a Bayesian point of view. In this work we propose a novel approach for uncertainty estimation based on autoencoder models: The recursive application of a previously trained autoencoder model can be interpreted as a dynamical system storing training examples as attractors. While input images close to known samples will converge to the same or similar attractor, input samples containing unknown features are unstable and converge to different training samples by potentially removing or changing characteristic features. The use of dropout during training and inference leads to a family of similar dynamical systems, each one being robust on samples close to the training distribution but unstable on new features. Either the model reliably removes these features or the resulting instability can be exploited to detect problematic input samples. We evaluate our approach on several dataset combinations as well as on an industrial application for occupant classification in the vehicle interior for which we additionally release a new synthetic dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源