论文标题

合成光伏和风力预测数据

Synthetic Photovoltaic and Wind Power Forecasting Data

论文作者

Vogt, Stephan, Schreiber, Jens, Sick, Bernhard

论文摘要

在几种应用中,具有很高可再生能源的电力系统中的光伏和风能预测至关重要。其中包括稳定的网格操作,有利可图的电力交易以及前瞻性系统计划。但是,缺乏用于基于机器学习的预测方法研究的公开可用数据集。本文提供了一个公开访问的时间序列数据集,其中包含逼真的合成功率数据。其他公共和非公开可用的数据集通常缺乏精确的地理坐标,时间戳或静态电厂信息,例如保护商业秘密。相反,此数据集提供了这些数据集。该数据集包含120个光伏和273个风力发电厂,从每小时500天的分辨率开始,整个德国各地都有不同的侧面。大量可用方面允许预测实验包括空间相关性和在传输和多任务学习中进行的实验。它包括图标欧盟天气模型的侧面特异性电源依赖性,非合成输入特征。使用物理模型和实际气象测量的虚拟发电厂的模拟提供了现实的合成功率测量时间序列。这些时间序列对应于各自天气测量位置的虚拟发电厂的功率输出。由于合成时间序列仅基于天气测量,因此天气预报的可能错误与实际功率数据中的错误相当。除了数据描述外,我们还通过比较简化的物理模型和机器学习模型来评估基于天气预测的功率预测的质量。该实验表明,合成功率数据上的预测错误与现实世界的历史功率测量相媲美。

Photovoltaic and wind power forecasts in power systems with a high share of renewable energy are essential in several applications. These include stable grid operation, profitable power trading, and forward-looking system planning. However, there is a lack of publicly available datasets for research on machine learning based prediction methods. This paper provides an openly accessible time series dataset with realistic synthetic power data. Other publicly and non-publicly available datasets often lack precise geographic coordinates, timestamps, or static power plant information, e.g., to protect business secrets. On the opposite, this dataset provides these. The dataset comprises 120 photovoltaic and 273 wind power plants with distinct sides all over Germany from 500 days in hourly resolution. This large number of available sides allows forecasting experiments to include spatial correlations and run experiments in transfer and multi-task learning. It includes side-specific, power source-dependent, non-synthetic input features from the ICON-EU weather model. A simulation of virtual power plants with physical models and actual meteorological measurements provides realistic synthetic power measurement time series. These time series correspond to the power output of virtual power plants at the location of the respective weather measurements. Since the synthetic time series are based exclusively on weather measurements, possible errors in the weather forecast are comparable to those in actual power data. In addition to the data description, we evaluate the quality of weather-prediction-based power forecasts by comparing simplified physical models and a machine learning model. This experiment shows that forecasts errors on the synthetic power data are comparable to real-world historical power measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源