论文标题

GCD和LCM功能的双曲线总和几个整数

Hyperbolic summation for functions of the GCD and LCM of several integers

论文作者

Heyman, Randell, Tóth, László

论文摘要

令$ k \ ge 2 $为固定整数。我们考虑类型$ \ sum_ {n_1 \ cdots n_k \ le x} f(n_1,\ ldots,n_k)$的总和,取过了双曲线区域$ \ {(n_1,\ ldots,n_k,n_k)\ in {\ bb n} $ f:{\ bbb n}^k \ to {\ bbb c} $是给定函数。特别是,我们推断出具有剩余术语的渐近公式,以$ \ sum_ {n_1 \ cdots n_k \ le x} f(((n_1,\ ldots,n_k))$和$ \ sum_ sum_1整数的lcm $ n_1,\ ldots,n_k $,其中$ f:{\ bbb n} \ to {\ bbb c} $属于某些类别的函数。我们的一些结果概括了作者以$ k = 2 $获得的结果。

Let $k\ge 2$ be a fixed integer. We consider sums of type $\sum_{n_1\cdots n_k\le x} F(n_1,\ldots,n_k)$, taken over the hyperbolic region $\{(n_1,\ldots,n_k)\in {\Bbb N}^k: n_1\cdots n_k\le x\}$, where $F:{\Bbb N}^k\to {\Bbb C}$ is a given function. In particular, we deduce asymptotic formulas with remainder terms for the hyperbolic summations $\sum_{n_1\cdots n_k\le x} f((n_1,\ldots,n_k))$ and $\sum_{n_1\cdots n_k\le x} f([n_1,\ldots,n_k])$, involving the GCD and LCM of the integers $n_1,\ldots,n_k$, where $f:{\Bbb N}\to {\Bbb C}$ belongs to certain classes of functions. Some of our results generalize those obtained by the authors for $k=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源