论文标题
带有Erlang时钟的人口游戏:融合到NASH平衡以进行成对比较动态
Population Games With Erlang Clocks: Convergence to Nash Equilibria For Pairwise Comparison Dynamics
论文作者
论文摘要
分析人口游戏和大量人口限制中进化动态的流行方法认为,每个代理人固有的泊松过程(或时钟)决定何时可以修改其策略。因此,这种方法以指数分布的纠正间隔为前提,并且对于每种策略都需要在新的修订时间之前完成的子任务(子策略)序列的情况不足。本文提出了一种在以下前提下的方法,即子策略的持续时间成倍分布,从而导致Erlang分布式革命间隔。我们假设一个所谓的成对繁殖协议捕获了代理的修订偏好,以使我们的分析混凝土。子战略的存在带来了与现有模型和结果不相容的其他动力学。我们的主要贡献是双重的,都得出了确定性的近似值对大人群有效的确定性近似。当潜在游戏为策略带来回报时,我们证明了人口状态与NASH均衡集的融合。我们使用系统理论的被动性来确定保证这种收敛性游戏的条件。
The prevailing methodology for analyzing population games and evolutionary dynamics in the large population limit assumes that a Poisson process (or clock) inherent to each agent determines when the agent can revise its strategy. Hence, such an approach presupposes exponentially distributed inter-revision intervals, and is inadequate for cases where each strategy entails a sequence of sub-tasks (sub-strategies) that must be completed before a new revision time occurs. This article proposes a methodology for such cases under the premise that a sub-strategy's duration is exponentially-distributed, leading to Erlang distributed inter-revision intervals. We assume that a so-called pairwise-comparison protocol captures the agents' revision preferences to render our analysis concrete. The presence of sub-strategies brings on additional dynamics that is incompatible with existing models and results. Our main contributions are twofold, both derived for a deterministic approximation valid for large populations. We prove convergence of the population's state to the Nash equilibrium set when a potential game generates a payoff for the strategies. We use system-theoretic passivity to determine conditions under which this convergence is guaranteed for contractive games.