论文标题
TOPETEMP:从温度拓扑的解析沉淀结构
TopTemp: Parsing Precipitate Structure from Temper Topology
论文作者
论文摘要
技术进步部分是由于新的制造工艺的开发所带来的,从而导致新材料或材料的财产改进。新制造方法的开发和评估是由于复杂,定义不足的高级制造过程参数与所得的微观结构之间的关系,劳动,时间和资源密集型昂贵。在这项工作中,我们介绍了由扫描电子显微镜捕获的tepter(热处理)依赖材料微结构的拓扑表示,称为toptemp。我们表明,这种拓扑表示能够在数据限制设置中支持微观结构的温度分类,对以前看不见的样本很好地概括,对图像扰动非常健壮,并捕获了域可解释的特征。提出的工作表现优于常规的深度学习基线,这是提高对过程参数和产生材料属性的理解的第一步。
Technological advances are in part enabled by the development of novel manufacturing processes that give rise to new materials or material property improvements. Development and evaluation of new manufacturing methodologies is labor-, time-, and resource-intensive expensive due to complex, poorly defined relationships between advanced manufacturing process parameters and the resulting microstructures. In this work, we present a topological representation of temper (heat-treatment) dependent material micro-structure, as captured by scanning electron microscopy, called TopTemp. We show that this topological representation is able to support temper classification of microstructures in a data limited setting, generalizes well to previously unseen samples, is robust to image perturbations, and captures domain interpretable features. The presented work outperforms conventional deep learning baselines and is a first step towards improving understanding of process parameters and resulting material properties.