论文标题

非热rosenzweig-porter随机马trix合奏:梗阻对分形相

Non-Hermitian Rosenzweig-Porter random-matrix ensemble: Obstruction to the fractal phase

论文作者

De Tomasi, Giuseppe, Khaymovich, Ivan M.

论文摘要

我们研究了非富甲系统中非凝学但扩展(nee)阶段的稳定性。为此,我们将所谓的Rosenzweig-Porter随机矩阵集合(RP)概括为已知,该集合(RP)与Anderson局部化的和god的局部化相关的阶段呈现为非固定阶段。我们在分析和数值上分析了非富米病例的光谱和多重型特性。我们表明,对矩阵条目的非蜂巢性质是稳定的。但是,分形相的稳定性取决于对角线元件的选择。对于纯真实或虚构的对角线电势,分形相是完整的,而对于通用的复杂对角线电势,分形相消失了,为局部化。

We study the stability of non-ergodic but extended (NEE) phases in non-Hermitian systems. For this purpose, we generalize a so-called Rosenzweig-Porter random-matrix ensemble (RP), known to carry a NEE phase along with the Anderson localized and ergodic ones, to the non-Hermitian case. We analyze, both analytically and numerically, the spectral and multifractal properties of the non-Hermitian case. We show that the ergodic and the localized phases are stable against the non-Hermitian nature of matrix entries. However, the stability of the fractal phase depends on the choice of the diagonal elements. For purely real or imaginary diagonal potential the fractal phases is intact, while for a generic complex diagonal potential the fractal phase disappears, giving the way to a localized one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源