论文标题
兰德斯飞机中的等等问题
The Isoperimetric Problem In Randers Planes
论文作者
论文摘要
在本文中,$(\ mathbb {r}^2,f =α+β)$中的等等问题,这是欧几里得平面$(\ Mathbb {r}^2,α)$的略微变形,该$由适当的一种形式$β$进行了研究。我们证明,以原点为中心的圆圈达到了相对于芬斯勒几何形状中众所周知的体积形式的等值范围问题的局部最大面积。
In this paper, the isoperimetric problem in Randers planes, $(\mathbb{R}^2,F=α+β)$, which are slight deformation of the Euclidean plane $(\mathbb{R}^2,α)$ by suitable one forms $β$, have been studied. We prove that the circles centred at the origin achieves the local maximum area of the isoperimetric problem with respect to well known volume forms in Finsler geometry.