论文标题

Lovelock重力中的薄外壳动力学

Thin shell dynamics in Lovelock gravity

论文作者

Guilleminot, Pablo, Merino, Nelson, Olea, Rodrigo

论文摘要

我们研究了Lovelock重力中球形对称的薄壳的匹配条件,可以从相应的一阶动作的变化中读取。实际上,将迈尔斯的边界项添加到重力作用中,消除了该功能中对加速度的依赖性,因此规范动量在总动作的变化中出现在表面术语中。该过程导致连接条件由定义为垂直于边界的进化的规范动量的不连续性给出。特别是,我们纠正了文献中的现有结果,用于通用洛夫洛克理论中的薄壳崩溃,这些壳崩溃是从对系统中总导数项的不准确分析中错误地得出的。

We study matching conditions for a spherically symmetric thin shell in Lovelock gravity which can be read off from the variation of the corresponding first-order action. In point of fact, the addition of Myers' boundary terms to the gravitational action eliminates the dependence on the acceleration in this functional and such that the canonical momentum appears in the surface term in the variation of the total action. This procedure leads to junction conditions given by the discontinuity of the canonical momentum defined for an evolution normal to the boundary. In particular, we correct existing results in the literature for the thin shell collapse in generic Lovelock theories, which were mistakenly drawn from an inaccurate analysis of the total derivative terms in the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源