论文标题

通过联邦变压器在云制造中具有隐私性的异常检测

Privacy-preserving Anomaly Detection in Cloud Manufacturing via Federated Transformer

论文作者

Ma, Shiyao, Nie, Jiangtian, Kang, Jiawen, Lyu, Lingjuan, Liu, Ryan Wen, Zhao, Ruihui, Liu, Ziyao, Niyato, Dusit

论文摘要

随着云制造的快速发展,随着核心体系结构的发展,工业生产已经得到了大量发展。但是,边缘设备通常会遭受工业生产异常和失败的困扰。因此,及时,准确地检测这些异常情况对于云制造至关重要。因此,直接的解决方案是边缘设备将数据上传到云中以进行异常检测。但是,行业4.0提出了更高的数据隐私和安全性要求,因此将数据直接上传到云的数据是不现实的。考虑到上述严重挑战,本文定制了一个弱监督的边缘计算计算异常检测框架,即基于联邦学习的基于学习的变压器框架(\ textit {fedanomaly}),以处理云制造中的异常检测问题。具体来说,我们引入了联合学习(FL)框架,该框架允许边缘设备与云合作训练异常检测模型而不会损害隐私。为了提高框架的隐私性能,我们为上传的功能添加了差异隐私噪声。为了进一步提高边缘设备提取异常特征的能力,我们使用变压器提取异常数据的特征表示。在这种情况下,我们设计了一种新颖的协作学习协议,以促进FL和Transformer之间的有效协作。此外,对四个基准数据集的大量案例研究验证了提议的框架的有效性。据我们所知,这是第一次集成FL和变压器来处理云制造中的异常检测问题。

With the rapid development of cloud manufacturing, industrial production with edge computing as the core architecture has been greatly developed. However, edge devices often suffer from abnormalities and failures in industrial production. Therefore, detecting these abnormal situations timely and accurately is crucial for cloud manufacturing. As such, a straightforward solution is that the edge device uploads the data to the cloud for anomaly detection. However, Industry 4.0 puts forward higher requirements for data privacy and security so that it is unrealistic to upload data from edge devices directly to the cloud. Considering the above-mentioned severe challenges, this paper customizes a weakly-supervised edge computing anomaly detection framework, i.e., Federated Learning-based Transformer framework (\textit{FedAnomaly}), to deal with the anomaly detection problem in cloud manufacturing. Specifically, we introduce federated learning (FL) framework that allows edge devices to train an anomaly detection model in collaboration with the cloud without compromising privacy. To boost the privacy performance of the framework, we add differential privacy noise to the uploaded features. To further improve the ability of edge devices to extract abnormal features, we use the Transformer to extract the feature representation of abnormal data. In this context, we design a novel collaborative learning protocol to promote efficient collaboration between FL and Transformer. Furthermore, extensive case studies on four benchmark data sets verify the effectiveness of the proposed framework. To the best of our knowledge, this is the first time integrating FL and Transformer to deal with anomaly detection problems in cloud manufacturing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源