论文标题
嵌入式CNN进行的渐进最小路径方法
Progressive Minimal Path Method with Embedded CNN
论文作者
论文摘要
我们提出了路径-CNN,这是一种通过将卷积神经网络(CNN)嵌入到渐进的最小路径方法中的肾小管结构中心线的方法。最小路径方法被广泛用于拓扑感知中心线分割,但通常这些方法依赖于弱的手动图像特征。相比之下,CNN使用强大的图像特征,这些特征是从图像中自动学习的。但是,CNN通常不会考虑结果的拓扑,并且通常需要大量的注释进行培训。我们将CNN集成到最小路径方法中,以便两种技术彼此受益:CNNS采用了学到的图像特征来改善最小路径的确定,而最小路径方法可确保分段中心线的正确拓扑,提供了强大的几何学阶段,为CNN的表现提供了强大的培训,并降低了训练量的训练。我们的方法比许多最近的方法具有较低的硬件要求。与其他方法的定性和定量比较表明,路径-CNN可以实现更好的性能,尤其是在处理具有挑战性的环境中具有复杂形状的管状结构时。
We propose Path-CNN, a method for the segmentation of centerlines of tubular structures by embedding convolutional neural networks (CNNs) into the progressive minimal path method. Minimal path methods are widely used for topology-aware centerline segmentation, but usually these methods rely on weak, hand-tuned image features. In contrast, CNNs use strong image features which are learned automatically from images. But CNNs usually do not take the topology of the results into account, and often require a large amount of annotations for training. We integrate CNNs into the minimal path method, so that both techniques benefit from each other: CNNs employ learned image features to improve the determination of minimal paths, while the minimal path method ensures the correct topology of the segmented centerlines, provides strong geometric priors to increase the performance of CNNs, and reduces the amount of annotations for the training of CNNs significantly. Our method has lower hardware requirements than many recent methods. Qualitative and quantitative comparison with other methods shows that Path-CNN achieves better performance, especially when dealing with tubular structures with complex shapes in challenging environments.