论文标题

CIRS:反事实交互式建议系统破裂的过滤器气泡

CIRS: Bursting Filter Bubbles by Counterfactual Interactive Recommender System

论文作者

Gao, Chongming, Wang, Shiqi, Li, Shijun, Chen, Jiawei, He, Xiangnan, Lei, Wenqiang, Li, Biao, Zhang, Yuan, Jiang, Peng

论文摘要

尽管个性化增加了推荐系统的实用性,但它也带来了过滤气泡的问题。例如,如果系统不断暴露并推荐用户感兴趣的项目,则可能还会使用户感到无聊且不满意。现有的工作研究过滤气泡在静态建议中,在静态建议中很难捕获过度暴露的影响。相比之下,我们认为在交互式建议中研究该问题并优化长期用户满意度更有意义。然而,由于成本高昂,在线训练模型是不现实的。因此,我们必须利用离线培训数据并消除因果对用户满意度的影响。 为了实现这一目标,我们提出了一个反事实交互式推荐系统(CIRS),该系统通过因果推断增强了离线增强学习(离线RL)。基本思想是首先了解历史数据的因果用户模型,以捕获项目对用户满意度的过度暴露效果。然后,它使用博学的因果用户模型来帮助RL策略的规划。为了脱机进行评估,我们根据现实观察到的用户评分数据集创新创建真实的RL环境(KUAIENV)。实验表明,CIR在爆发过滤器气泡中的有效性并在交互式建议中取得了长期成功。 CIRS的实现可通过https://github.com/chongminggao/cirs-codes获得。

While personalization increases the utility of recommender systems, it also brings the issue of filter bubbles. E.g., if the system keeps exposing and recommending the items that the user is interested in, it may also make the user feel bored and less satisfied. Existing work studies filter bubbles in static recommendation, where the effect of overexposure is hard to capture. In contrast, we believe it is more meaningful to study the issue in interactive recommendation and optimize long-term user satisfaction. Nevertheless, it is unrealistic to train the model online due to the high cost. As such, we have to leverage offline training data and disentangle the causal effect on user satisfaction. To achieve this goal, we propose a counterfactual interactive recommender system (CIRS) that augments offline reinforcement learning (offline RL) with causal inference. The basic idea is to first learn a causal user model on historical data to capture the overexposure effect of items on user satisfaction. It then uses the learned causal user model to help the planning of the RL policy. To conduct evaluation offline, we innovatively create an authentic RL environment (KuaiEnv) based on a real-world fully observed user rating dataset. The experiments show the effectiveness of CIRS in bursting filter bubbles and achieving long-term success in interactive recommendation. The implementation of CIRS is available via https://github.com/chongminggao/CIRS-codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源