论文标题
黑洞周围的一般相对论磁流失动力积聚的研究
Study of general relativistic magnetohydrodynamic accretion flow around black holes
论文作者
论文摘要
我们提出了一种新的方法,用于研究稳定,轴对称,对流,几何薄,磁流失动力学(MHD)积聚的全球结构,以完全相对论(GR)围绕黑色孔周围。考虑到理想的MHD条件和状态相对论方程(REO),我们解决了管理方程,以获得所有可能的平滑全球积聚解决方案。我们根据流量参数(即能量($ {\ cal e} $),角动量($ {\ cal l} $)和局部磁场来检查积聚物的动力学和热力学特性。对于较薄的GRMHD流,我们观察到磁场的环形组件($ b^ϕ $)通常在磁盘赤道平面上占据径向分量($ b^r $)。显然,这表明环形磁场确实在调节磁盘动力学中起重要作用。我们进一步注意到,磁盘主要保持气体压力($ p _ {\ rm Gas} $)($β= P = P _ {\ rm Gas}/p _ {\ rm mag}> 1 $,$ p _ {\ rm mag mag} $ referers磁力在近乎水平的区域中,除了磁性磁场,均为$ sim c. $ c。我们观察到麦克斯韦的应力最终会产生磁盘内部的角动量转运。为此,我们计算似乎径向变化的粘度参数($α$)。此外,我们研究了$α$和$β$之间的基本缩放关系,这显然区分了磁盘径向共存的两个域。最后,我们在GRMHD模拟研究领域讨论了当前形式主义的实用性。
We present a novel approach to study the global structure of steady, axisymmetric, advective, geometrically thin, magnetohydrodynamic (MHD) accretion flow around black holes in full general relativity (GR). Considering ideal MHD conditions and relativistic equation of state (REoS), we solve the governing equations to obtain all possible smooth global accretion solutions. We examine the dynamical and thermodynamical properties of accreting matter in terms of the flow parameters, namely energy (${\cal E}$), angular momentum (${\cal L}$), and local magnetic fields. For a thin GRMHD flow, we observe that toroidal component ($b^ϕ$) of the magnetic fields generally dominates over radial component ($b^r$) at the disk equatorial plane. This evidently suggests that toroidal magnetic field indeed plays important role in regulating the disk dynamics. We further notice that the disk remains mostly gas pressure ($p_{\rm gas}$) dominated ($β= p_{\rm gas}/p_{\rm mag} > 1$, $p_{\rm mag}$ refers magnetic pressure) except at the near horizon region, where magnetic fields become dynamically important ($β\sim 1$). We observe that Maxwell stress is developed that eventually yields angular momentum transport inside the disk. Towards this, we calculate the viscosity parameter ($α$) that appears to be radially varying. In addition, we examine the underlying scaling relation between $α$ and $β$, which clearly distinguishes two domains coexisted along the radial extent of the disk. Finally, we discuss the utility of the present formalism in the realm of GRMHD simulation studies.